
Abstract - Receive side scaling (RSS) is a NIC technology
that provides the benefits of parallel receive processing in
multiprocessing environments. However, RSS lacks a critical
data steering mechanism that would automatically steer
incoming network data to the same core on which its application
thread resides. This absence causes inefficient cache usage if an
application thread is not running on the core on which RSS has
scheduled the received traffic to be processed and results in
degraded performance. To remedy the RSS limitation, Intel’s
Ethernet Flow Director technology has been introduced.
However, our analysis shows that Flow Director can cause
significant packet reordering. Packet reordering causes various
negative impacts in high-speed networks. We propose a NIC data
steering mechanism to remedy the RSS and Flow Director
limitations. This data steering mechanism is mainly targeted at
TCP. We term a NIC with such a data steering mechanism “A
Transport Friendly NIC” (A-TFN). Experimental results have
proven the effectiveness of A-TFN in accelerating TCP/IP
performance.

Indexed Terms – TCP/IP, Parallel Network Stacks, Core
Affinity, High Performance Networking, 40GigE, 100GiE.

1. Introduction & Motivation

Computing is shifting towards multiprocessing. The
fundamental goal of multiprocessing is improved performance
through the introduction of additional hardware threads,
CPUs, or cores (all of which will be referred to as “cores” for
simplicity). The emergence of multiprocessing has brought
both opportunities and challenges for TCP/IP performance
optimization in such environments. Modern network stacks
can exploit parallel cores to allow either message-based
parallelism or connection-based parallelism as a means of
enhancing performance [1]. To date, major network stacks
such as Windows, Solaris, and Linux have been redesigned
and parallelized to better utilize additional cores. While
existing OSes exploit parallelism by allowing multiple threads
to carry out network operations concurrently in the kernel,
supporting this parallelism carries significant costs,
particularly in the context of contention for shared resources,
software synchronization, and poor cache efficiencies.
However, investigations [2][3][4] indicate that CPU core
affinity on network processing in multiprocessing
environment can significantly reduce contention for shared
resources, minimize software synchronization overheads, and
enhance cache efficiency.

Core affinity on networking processing has the following
goals: (1) Interrupt affinity: Network interrupts of the same
type should be directed to a single core. Redistributing
network interrupts in either a random or round-robin fashion
to different cores has undesirable side effects [3]. (2) Flow
affinity: Packets belong to a specific TCP flow should be
processed by the same core. TCP has a large and frequently
accessed state that must be shared and protected when packets
from the same connection are processed. Flow affinity reduces
contention for shared resources, minimizes software

synchronization, and enhances cache efficiency. (3) Network
data affinity: Incoming network data should be steered to the
same core on which its application thread resides. This is
becoming more important with the advent of Direct Cache
Access (DCA) [5].

The emergence of parallel network stacks and the
necessity of core affinity on network processing in
multiprocessing environment require new NIC designs. An
NIC should not only provide mechanisms to allow parallel
receive processing to better utilize parallel network stacks, but
also to facilitate core affinity on network processing in
multiprocessing environments. RSS [6] is a NIC technology
that steps toward that direction. RSS supports multiple receive
queues; it assigns packets of the same data flow to a single
queue and evenly distributes traffic flows across queues. With
Message Signal Interrupt (MSI/MSI-X) support, each receive
queue is assigned a dedicated interrupt and RSS steers
interrupts on a per-queue basis. RSS provides the benefits of
parallel receive processing in multiprocessing environments.
However, RSS has a limitation: it cannot steer incoming
network data to the same core where its network application
thread resides. The reason is simple: RSS does not maintain
the relationship “Traffic Flows → Network applications →
Cores” in the NIC. Since network applications run on cores,
we simply put it as “Traffic Flows → Cores (Applications)”.
This is symptomatic of a broader disconnect between existing
software architecture and multicore hardware. With OSes like
Windows and Linux, if an application thread is running on one
core, while RSS has scheduled received traffic to be processed
on a different core, poor cache efficiency and significant core-
to-core synchronization overheads will result, The overall
system efficiency may be severely degraded (see Section 2).

In parallel to our research, Intel has introduced the
Ethernet Flow Director technology [7]. The basic idea is
simple: Flow Director maintains the relationship “Traffic
Flows → Cores (Applications)” in the NIC. Flow Director not
only provides the benefits of parallel receive processing in
multiprocessing environments, it also can automatically steer
packets of a specific data flow to the same core on which its
application thread resides. However, our research shows that
Flow Director can cause significant packet reordering in
multiprocessing environments [see Section 2.5]. In high-speed
networks, packet reordering causes various negative impacts
[8][9]. In addition, TCP Selective Acknowledgement (SACK)
is now implemented and enabled by almost all general-
purpose OSes. When packet reordering occurs, processing or
generating TCP SACK information can seriously degrade the
TCP sender or receiver’s performance [10]. For example, the
receiver would sort the out-of-order queue to generate SACKs
in the event of packet reordering. Sorting the out-of-order
queue is expensive, especially when the queue is large.
Because the networking community is working towards

A Transport‐Friendly NIC for Multicore/Multiprocessor Systems

Wenji Wu, Phil DeMar, Matt Crawford
Fermilab, P.O. Box 500, Batavia, IL 60510

40GigE and 100GigE, the performance requirements on
TCP/IP are becoming more challenging. Flow Director’s
packet reordering problem becomes more serious.

We propose a NIC mechanism to remedy the RSS and
Flow Director limitations. It steers incoming network data to
the same core on which its application thread resides and
ensures in-order packet delivery. Our data steering mechanism
is mainly targeted at TCP, but can be extended to UDP and
SCTP. We term a NIC with such a data steering mechanism A
Transport-Friendly NIC, or A-TFN. As Flow Director, A-TFN
maintains the relationship “Traffic Flows → Cores
(Applications)” in the NIC, with OSes correspondingly
enhanced to support such capability. For transport layer
traffic, A-TFN maintains a Flow-to-Core table in the NIC,
with one entry per flow. Each entry tracks which core a flow
should be assigned to. However, A-TFN is different from
Flow Director in two significant ways: (1) A-TFN applies a
very simple yet effective mechanism to update the Flow-to-
Core table in the NIC. It requires the most minimal OS
support (see Section 3). However, to support Flow Director,
OS must be multiple TX queue capable [11]. Therefore, A-
TFN is simpler and minimizes changes in the OS. And (2) A-
TFN has a mechanism to ensure in-order packet delivery.
Flow Director does not have such a mechanism and our
analysis and experiments show that Flow Director can cause
significant packet reordering in multiprocessing environments.

To design A-TFN, there is an obvious trade-off between
the amount of work done in the NIC and in the OS. In the
paper, we discuss two design options. Option 1 is to minimize
changes in the OS and focuses instead on identifying the
minimal set of mechanisms to add to the NIC. This design
adds complexity and cost to the NIC. On the other end of the
design space, it could be let the OS update the flow-to-core
table directly without changing anything in the NIC hardware
(option 2). Conceptually, this approach could be fairly
straightforward to implement. However, it might add
significant extra communication overheads between the OS
and the NIC, especially when the Flow-to-Core table gets
large. Due to space limitation, this paper is mainly focused on
the first design option. The new NIC is emulated in software
and it shows that the solution is effective and practical to
remedy the limitations in RSS and Flow Director. In future
work, we will explore the second design option.

The contributions of this paper are fourfold. First, we
show for certain OSes, such as Linux, that tying a traffic flow
to a single core does not necessarily ensure flow affinity or
network data affinity. Second, we show that RSS lacks a
mechanism to automatically steer packets of a data flow to the
same core(s) on which its application thread resides. Third, we
show that Flow Director can cause significant packet
reordering in multiprocessing environments. Flow Director
lacks mechanisms to ensure in-order packet delivery when it
steers packets across cores. Fourth, we propose the A-TFN
mechanism to remedy the limitations in RSS and Flow
Director. Experimental results have proven the effectiveness
of A-TFN in accelerating TCP/IP performance. Because the
networking community is headed for 40GigE and 100GigE,

the performance requirements on TCP/IP are more
challenging; further architecture optimizations and technology
advances are necessary. A-TFN is working toward that
direction and is timely.

The remainder of the paper is organized as follows: In
Section 2, we present problem formulation. Section 3
describes the A-TFN mechanism. In section 4, we discuss
experiment results that showcase the effectiveness of our A-
TFN mechanism. In section 5, we present related research. We
conclude in section 6.

2. Problem Formulation

2.1 Packet Receive Processing with RSS

RSS is a NIC technology. It supports multiple receive
queues and integrates a hashing function in the NIC. NIC
computes a hash value for each incoming packet. Based on
hash values and an indirection table, NIC assigns packets of
the same data flow to a single queue and evenly distributes
traffic flows across queues. With Message Signal Interrupt
(MSI/MSI-X) and Flow Pinning support, each receive queue is
assigned a dedicated interrupt and tied to a specific core. The
device driver allocates and maintains a ring buffer for each
receive queue within system memory. For packet reception, a
ring buffer must be initialized and pre-allocated with empty
packet buffers. The ring buffer size is device- and driver-
dependent. Fig. 1 illustrates packet receive-processing with
RSS: (1) When incoming packets arrive, the hash function is
applied to the header to produce a hash result. The hash result
is used to index the indirection table. The indirection table is
the data structure that contains an array of core numbers to be
used for RSS. Each lookup from the indirection table
identifies the core and hence, the associated receive queue. (2)
The NIC assigns incoming packets to the corresponding
receive queues. (3) The NIC DMAs (direct memory access)
the received packets into the corresponding ring buffers in the
host system memory. (4) The NIC sends interrupts to the cores
that are associated with the non-empty queues. Subsequently,
the cores respond to the network interrupts and process
received packets up through the network stack from the
corresponding ring buffers one by one. Appendix A has more
details of RSS mechanisms.

The OS can periodically rebalance the network load on
cores by updating the indirection table, based on the
assumption that the hash function will evenly distribute

Fig. 1 Packet Receiving Process with RSS

incoming traffic flows across the indirection table entries.
Since the OS does not know which specific entry in the
indirection table an incoming traffic flow will be mapped to, it
can only passively react to load imbalance situations by
changing each core’s number of appearances in the indirection
table. For better load balancing performance, the size of the
indirection table is typically two to eight times the number of
cores in the system [6]. For example, in Fig. 1, the indirection
table has 8 entries, which are populated as shown. As such,
traffic loads directed to Core 0, 1, 2, and 3 are 50%, 25%,
12.5%, and 12.5%, respectively.

2.2 RSS Limitation and the Reasons

RSS provides the benefits of parallel receive processing.
However, this mechanism does present certain limitation: it
cannot steer incoming network data to the same core on which
its application thread resides. The reason is simple: RSS does
not maintain the relationship “Traffic Flows → Cores
(Applications) in the NIC. When packets arrive, the hash
function is applied to the header to produce a hash result.
Based on the hash values, the NIC assigns packets to receive
queues and then cores, with no way to consider on which core
the corresponding application thread is running. Although
receive queues can be instructed to send interrupt to a specific
set of cores, existing general purpose OSes can only provide
limited process-to-interrupt affinity capability; network
interrupt delivery is not synchronized with process scheduling.
This is because the OS schedulers have other priorities, such
as load balancing and fairness, over process-to-interrupt
affinity. Besides, multiple network applications’ traffic might
map to a single interrupt, which brings new challenges to an
OS scheduler. Therefore, a network application thread might
be scheduled on cores other than those where its
corresponding network interrupts are directed. This is
symptomatic of a broader disconnect between existing
software architecture and multicore hardware.

OSes like Windows implement the function of the
indirection table, which can provide limited data steering
capabilities for RSS. However, it still cannot steer packets of a
data flow to the same core where the application thread
resides. Turning again to Fig 1, network application thread P
is scheduled to run on Core 3. Its traffic might be hashed to an
entry that directs to other cores. The OS does not know which
specific entry in the indirection table a traffic flow will be
mapped to.

With existing RSS capability, there are many cases in
OSes in which a network application resides on cores other
than those to which its corresponding network interrupts are
directed: (1) A single-threaded application might handle
multiple concurrent TCP connections. Assuming such an
application handles n concurrent TCP connections and runs on
an m-core system, an RSS-enabled NIC will evenly
(statistically) distribute the n connections across the m cores.
Since the application thread can only run on a single core at
any moment, only n/m connections' network interrupts are
directed to the same core where the application runs. (2) Soft
partition technologies like CPUSET [12] are applied in the

context of networking environments. Since the OS (or system
administrator) has no way of knowing to which specific core
they will be mapped, network applications might be soft-
partitioned on cores other than those to which their network
interrupts are directed. (3) The general purpose OSes
scheduler prioritizes load balancing or power saving over
process-to-interrupt affinity [13][14]. For OSes like Linux,
when the multicore peak performance mode is enabled, the
scheduler tries to use all cores in parallel to the greatest extent
possible, distributing the load equally among them. When the
multicore power saving mode is enabled, the scheduler is
biased to restrict the workload to a single physical processor.
As a result, a network application might be scheduled on cores
other than those to which its network interrupts are directed.
For clarity, we illustrate the above cases in Fig. 2. The system
contains two physical processors, each with two cores. P1 –
P5 are processes that run within the system. P1 is a network
application thread that includes traffic flows. An RSS-enabled
NIC steers the traffic flows to different cores, as shown in the
figure (red arrows). In all of these cases, P1 resides on cores
other than those to which its corresponding network interrupts
are directed.

On OSes like Windows, when a core responds to the
network interrupt, the corresponding interrupt handler is
called, within which a deferred procedure call (DPC) is
scheduled. On the core, DPC processes received packets up
through the network stack from the corresponding ring buffer
one by one [15]. Therefore, on Windows, tying a traffic flow
to a single core does ensure interrupt affinity and flow affinity.
However, if network interrupts are not directed to cores on
which the corresponding applications reside, network data
affinity cannot be achieved, resulting in degraded cache
efficiency [6]. This reality might cause serious performance
degradation for NUMA systems. On some OSes, like Linux,
tying a traffic flow to a single core does not necessarily ensure
flow affinity or network data affinity due to Linux TCP’s
unique prequeue-backlog queue design. In the following
sections, we discuss in detail why the combination of RSS and
Flow Pinning cannot ensure flow affinity and network data
affinity in Linux.

A. P1 has multiple

concurrent connections

B. Soft partitioning

C. Load balancing

D. Power saving

Fig. 2 Network Irqs and Apps. on Different Cores

2.3 Linux Network Processing in Multicore Systems

Linux allows multiple threads to simultaneously process
different packets from the same or different connections. Two
types of threads may perform network processing in Linux:
application threads in process context and interrupt threads in
interrupt context. When an application makes socket-related
system calls, that application’s process context may be
borrowed to carry out network processing. When a NIC
interrupts a core, the associated handler services the NIC and
schedules the softirq, softnet. Afterwards, the softnet handler
processes received packets up through the network stack in
interrupt context. TCP is a connection-oriented protocol, and it
has a large and frequently accessed state that must be shared
and protected. In the case of the Linux TCP, the data structure
socket maintains a connection’s various TCP states, and there
is a per-socket lock to protect it from unsynchronized access.
The lock consists of a spinlock and a binary semaphore. The
binary semaphore construction is based on the spinlock. In
Linux, since an interrupt thread cannot sleep, when it accesses
a socket, the socket is protected with the spinlock. When an
application thread accesses a socket, the socket is locked with
the binary semaphore and is considered “owned-by-user.” The
binary semaphore synchronizes multiple application threads
among themselves. It is also used as a flag to notify interrupt
threads that a socket is “owned-by-user” to coordinate
synchronized access to the socket between interrupt and
application threads. Our previous research [16][17] studied the
details of the Linux packet receiving process. Here, we simply
summarize Linux TCP processing of the data receive path in
interrupt and process contexts, respectively.

a) TCP Processing in Interrupt Context
(1) When the NIC interrupts a core, the network interrupt’s

associated handler services the NIC and schedules the
softirq, softnet.

(2) The softnet handler moves a packet from the ring buffer
and processes the packet up through the network stack. If
there is no packet available in the ring buffer, the softnet
handler exits.

(3) A TCP packet (segment) is delivered up to the TCP layer.
The network stack first tries to identify the socket to
which the packet belongs, and then seeks to lock
(spinlock) the socket.

(4) The network stack checks if the socket is
“owned-by-user” or if an application thread is
sleeping and awaiting data:
• If yes, the packet will be enqueued into

the socket’s backlog queue or prequeue.
TCP processing will be performed later in
process context by the application thread.

• If not, the network stack will perform
TCP processing on the packet in interrupt
context.

(5) Unlock the socket; go to step 2.

b) TCP Processing in Process Context
(1) An application thread makes a socket-related

receive system call.

(2) Once the system call reaches the TCP layer, the network
stack seeks to lock (semaphore) the socket first.

(3) The network stack moves data from the socket into the
user space, and generates ACKs.

(4) If the socket’s prequeue and/or backlog queue are not
empty, the calling application’s process context will be
borrowed to carry out TCP processing.

(5) Unlock the socket and return from the system call.
For the data transmit path, network processing starts in

the process context when an application makes socket-related
system calls to send data. If TCP gives permission to send
(based on TCP receiver window, congestion window, and
sender window statuses), network processing in process
context can reach down to the bottom of the protocol stack.
Otherwise, transmit side network processing is triggered by
incoming TCP ACKs for the data receive path, which are
performed in their execution environments (interrupt or
process contexts). In this paper, we focus mainly on receive
side processing because it is known to be more memory
intensive and complex, and TCP processing on the transmit
side is also dependent on ACKs in the data receive path.

As described above, whether TCP processing is
performed in process or interrupt contexts depends on the
volatile runtime environments. For example, we used FTP to
download Linux kernels from www.kernel.org and
instrumented the Linux network stack to record the percentage
of traffic processed in process context. The recorded
percentage ranged from 50% to 75%. In a multicore system,
when an application’s process context is borrowed to execute
the network stack, TCP processing is performed on the core(s)
where the application is scheduled to run. When TCP
processing is performed in interrupt context, it is performed on
the cores to which the network interrupts are directed. Take,
for example, Fig. 3, in which network interrupts are directed to
core 0 and the associated network application thread is
scheduled to run on core 1. In interrupt context, TCP is
processed on core 0; in process context, this occurs on core 1.
Since TCP processing performed in process or interrupt
contexts depends on volatile runtime conditions, it may
alternate between these two cores. Therefore, although the
combination of RSS and Flow Pinning can tie a traffic flow to
a single core, when a network application thread resides on
some other core, TCP processing might alternate between

A. Linux TCP Processing in Process Context

B. Linux TCP Processing in Interrupt Context

Fig. 3 Linux TCP Processing Contexts in the Data Receive Path

different cores. We would achieve neither flow affinity nor
network data affinity.

2.4 Negative Impacts

If a network application runs on cores other than those
where its corresponding RSS network interrupts are directed,
various negative impacts result. On both Windows and Linux
systems, network data affinity cannot be achieved. On OSes
like Linux, TCP processing might alternate between different
cores even if the interrupts for the flow are pinned to a specific
core. As a result, it will lead to poor cache efficiency and
cause significant core-to-core synchronization overheads.
Also, it renders the DCA technology ineffective. In multiple
core systems, core-to-core synchronizations involve costly
snoops and MESI operations [18], resulting in extra system
bus traffic. This is especially expensive when the contending
cores exist within different physical processors, which usually
involves synchronous read/write operations to a certain
memory location. In addition, for Linux, interrupt and
application threads contend for shared resources, such as
locks, when they concurrently process packets from the same
flow. The socket’s spinlock, for example, would be in severe
contention. When a lock is in contention, contending threads
simply wait in a loop (“spin”), repeatedly checking until the
lock becomes available. While waiting, no useful work is
executed. Contention for other shared resources, such as
memory and system bus, also occurs frequently. Since this
intra-flow contention may occur on a per-packet basis, the
total contention overhead could be severe in high network I/O
environments.

To demonstrate the negative
impacts, we ran data
transmission experiments over
an isolated sub-network.
Sender: Dell R-805; 2 Quad
Core AMD Opteron 2346HE,
1.8GHz; Broadcom NetXtreme
II 1Gbps NIC; Linux 2.6.28. Receiver: SuperMicro Server; 2
Intel Xeon CPUs, 2.66 GHz; Intel PRO/1000 1Gbps NIC
(DCA not supported); Linux 2.6.28. The receiver’s CPU
architecture is as shown in Fig. 4.

In the experiments we used iperf [19] to send data in one
direction. The sender transmitted one TCP stream to the
receiver for 100 seconds. In the receiver, network interrupts
were all directed to core 0. However, iperf was pinned to
different cores: (1) Iperf was pinned to core 0 (network
interrupts and applications were pinned to the same core). (2)
Iperf was pinned to core 1 (network interrupts and applications
were pinned to different cores, but within the same processor).
(3) Iperf was pinned to core 2 (network interrupts and
applications were pinned to different processors). The
throughput rates in these experiments all saturated the 1Gbps
link (around 940 Mbps). The experiments were designed to
feature the same throughput rates. Therefore, we do not need
to normalize the final results with the throughputs. We ran
oprofile [20] to profile system performance in the case of the
receiver. The metrics of interest were: INST_RETIRED, the

number of instructions retired; BUS_TRAN_ANY, the total
number of completed bus transactions; and
BUS_HITM_DRV, the number of HITM (hit modified cache
line) signals asserted [21]. For these metrics, the number of
events between samples was 10000. We also enabled the
Linux Lockstat [12] to collect lock statistics. On this basis we
calculated the total time spent waiting to acquire various
kernel locks, and we called this WAITTIME-TOTAL.
Consistent results were obtained across repeated runs. The
results are as listed in Fig. 5, with a 95% confidence interval.

The throughput rates in these experiments all saturated the
1Gbps link. However, Fig. 5 shows that the metrics of iperf @
Core 1 and Core 2 are much higher than those of iperf @ Core
0. This verifies that when a network application is scheduled
on cores other than those to which the corresponding network
interrupts are directed, severely degraded system efficiency
will result. INST_RETIRED measures the load on the
receiver. The results demonstrate that contention for shared
resources between interrupt and application threads led to an
extra load. The extra load is mainly related to time spent
waiting for locks. The experimental WAITTIME-TOTAL data
verify this point. It is surprising that the BUS_TRANS_ANY
of iperf @ Core 2 is almost twice that of iperf @ Core 0. The
BUS_HITM_DRV of iperf @ Core 0 is far less that that of
iperf @ Core 1 and Core 2. Since the throughput rates in these
experiments all saturated the 1Gbps link, the extra
BUS_TRANS_ANY and BUS_HITM_DRV transactions of
iperf @ Core 1 and Core 2 were caused by cache trashing and
lock contention, as analyzed above.

2.5 Why does Flow Director cause packet reordering?

Intel has introduced the Ethernet Flow Director
technology to remedy the RSS limitation. Flow Director is a
NIC technology. As shown in Fig. 6, it supports multiple

Fig. 4 Receiver CPUs

Fig. 5. Experiment Results

receive queues in
the NIC, up to the
number of cores in
the system. Each
receive queue has a
dedicated interrupt
and is tied to a
specific core; each
core in the system
is assigned a
specific receive
queue. Flow
Director maintains
a Flow-to-Core table with a single entry per flow. Each entry
tracks the receive queue (core) to which a flow should be
assigned. Entries within the Flow-to-Core table are updated by
outgoing packets. To support Flow Director, OS must be
multiple TX queue capable [11]. Each core in the system is
assigned a specific transmit queue. Outgoing traffic generated
on a specific core is transmitted via its corresponding transmit
queue. For an outgoing transport-layer packet, the OS records
the processing core ID and use it to update the corresponding
entry in the table. Flow Director makes use of the 5-tuple
{src_addr, dst_addr, protocol, src_port, dst_port} in the
receive direction to specify a flow. Therefore, for an outgoing
packet with the header {(src_addr: x), (dst_addr: y),
(protocol: z), (src_port: p), (dst_port: q)}, its corresponding
flow entry in the table is identified as {(src_addr: y),
(dst_addr: x), (protocol: z), (src_port: q), (dst_port: p)}.
Packet receiving process with Flow Director is similar to that
of with RSS, except that incoming packets look up the Flow-
to-Core table to identify the core.

Flow Director not only provides the benefits of parallel
receive processing in multiprocessing environments, it also
can automatically steer packets of a data flow to the same core
on which its application resides. However, our analysis shows
that Flow Director cannot guarantee in-order packet delivery
in multiprocessing environments.

As shown in Fig. 7, at time

!

T "# , Flow 1’s flow entry
maps to Core 0 in the Flow-to-Core table. At this instant,
packet S of Flow 1 arrives; based on the “Traffic Flow →
Core” table, it is assigned to Core 0. At time T , due to
process migration, Flow 1’s flow entry is updated and maps to
Core 1. At T +! , Packet S+1 of Flow 1 arrives and is
assigned to the new core, namely Core 1. After assigning
received packets to the corresponding receive queues, NIC
copies them into system
memory via DMA, and
fires network interrupts,
if necessary. When a
core responds to a
network interrupt, it
processes received
packets up through the
network stack from the
corresponding ring
buffer one by one. In

our case, Core 0 processes packet S up through the network
stack from Ring Buffer 0, and Core 1 services packet S+1
from Ring Buffer 1. Let T

service
(S) and T

service
(S +1) be the

times at which the network stack starts to service packets S
and S+1, respectively. If Tservice(S)> Tservice(S +1) , the network
stack would receive packet S+1 earlier than packet S, resulting
in packet reordering. Let D be the ring buffer size and let the
network stack’s packet service rate be

!

R
service

 (packets per
second). Assume there are n packets ahead of S in Ring Buffer
0 and m packets ahead of S+1 in Ring Buffer 1. Then it has
T
service

(S) = T !! + n / R
service and

T
service

(S +1) = T +! +m / R
service

.
If

!

" is small and n >m , the condition of
T
service

(S)> T
service

(S +1) would easily hold and lead to packet
reordering. Since the ring buffer size is

!

D, the worst case is
n = D!1 and m = 0 . It has Tservice(S) = T !! + (D!1) / Rservice
and Tservice(S +1) = T +! . The ring buffer size D is a design
parameter for the NIC and driver. For example, the Myricom
10Gb NIC is 512.

In a multicore system, a general-purpose OS scheduler
tries to use all core resources in parallel as much as possible,
distributing and adjusting the load among the cores. Process
migration across cores occurs frequently. The conditions for
Flow Director to cause packet reordering can be easily
satisfied. Flow Director can easily cause packet reordering.

To validate our analysis, we ran data transmission
experiments over an isolated network. A sender was directly
connected to a receiver via a physical 10Gbps link. The sender
and receiver are the same computer systems as specified in
Section 2.4, except that:

Sender: Myricom 10Gbps Ethernet NIC.
Receiver: Intel X520 Server Adapter with Flow Director

enabled (configured with suggested default parameters [11]:
FdirMode=1, AtrSampleRate=20), 10Gbps, MTU 1500; Linux
2.6.34 (Multiple TX Queue Capable).

In our experiments, iperf was used to send n parallel TCP
streams from sender to receiver for 100 seconds. iperf was not
pinned to a specific core in the receiver. Linux was configured
to run in multicore peak performance mode; the scheduler
tries to use all core resources in parallel as much as possible,
distributing the load equally among the cores. Iperf is a multi-
threaded network application. With multiple parallel TCP data
streams, a dedicated child thread is spawned and assigned to
handle each stream. As a result, iperf threads may migrate
across cores. The receiver was instrumented to record out-of-
order packets, and we
calculated relevant packet
reordering ratios. The
experiment results, with a
95% confidence interval,
are shown in Table 1. The
degree of packet reordering
is significant. At n=200,
packet reordering ratio
reaches as high as 0.897%.

Fig. 7 A Simplified Model for
Packet Reordering Analysis

Fig. 6 Flow Director Mechanism

n Reordering Ratio
40 0.498% ± 0.067%

100 0.705% ± 0.042%
200 0.897% ± 0.038%

500 0.635% ± 0.154%

1000 0.409% ± 0.009%
2000 0.129% ± 0.003%
Table 1 Experiment Results

The experiment results validated our analysis. When the
scheduler tries to use all core resources in parallel as much as
possible, distributing the load equally among the cores, it will
lead to frequent process migration. As our analysis suggested,
the Flow Director mechanism would cause packet reordering
when process migration occurs. In addition, we ran tcpdump
to record a single stream’s packet trace at the receiver @
n=200. The packet trace analysis in Appendix B shows the
occurrence of duplicate Acknowledgements (ACKs), SACKs,
and data retransmissions due to packet reordering.

We then pin iperf to core 0 in the receiver and repeated
the above experiments. No packet reordering was discovered.
This is because when iperf is pinned to a specific core, its
child threads are also pinned to that core. There will be no
process migration in this case. In these conditions, Flow
Director does not cause packet reordering.

The root cause of the packet reordering is that Flow
Director lacks mechanisms to ensure in-order packet delivery
when it steers packet across cores. In high-speed networks,
packet reordering causes various negative impacts [8][9].
Many TCP implementations use the header prediction
algorithm to reduce the costs of TCP processing. However,
header prediction only works for in-sequence TCP segments.
If segments are reordered, most TCP implementation do far
more processing than they would for in-sequence delivery,
degrading the TCP sender and receiver’s performance. In
addition, TCP SACK is now implemented and enabled by
almost all general-purpose OSes. When packet reordering
occurs, the receiver will sort the out-of-order queue to
generate SACK blocks. For the sender, on receipt of SACK
information, the retransmission queue would be walked and
the relevant packets tagged as sacked or lost. In high-speed
networks, the number of packets in the fly is large. The
sender’s retransmission queue is large. Also, when packet
reordering occurs, out-of-order queue will be very large.
Sorting our-of-sequence queue in the receiver or walking the
retransmission queue in the sender can seriously degrade
system performance [8][10]. Because the networking
community is working towards 40GigE and 100GigE, the
performance requirements on TCP/IP are becoming more
challenging. Flow Director’s packet reordering problem
becomes more serious.

3. A Transport Friendly NIC (A‐TFN)

3.1 A-TFN Design

We propose A-TFN mechanism to remedy the RSS and
Flow Director limitations. A-TFN steers incoming network
data to the same core on which its application thread resides
and ensures in-order packet delivery. Our data steering
mechanism is mainly targeted at TCP, but can be extended to
UDP and SCTP. We base our A-TFN design on two
observations. First, a TCP connection’s traffic is bidirectional.
For a unidirectional data flow, ACKs on the reverse path result
in bidirectional traffic. Second, when an application makes
socket-related system calls, that application’s process context
would be borrowed to carry out network processing in process
context. This is true and common for all general purpose OSes
although their network stacks are implemented differently. In

the data transmit path, network processing starts in the process
context when an application makes socket-related system calls
to send data. If TCP gives permission to send, network
processing in process context can reach down to the bottom of
the protocol stack. In the data receive path, when an
application makes socket-related receive system calls to
moves data from the socket into the user space, it needs to
generate ACKs to advertise new receive window sizes. These
ACKs are generated in process context.

A-TFN’s basic idea is simple: it maintains the relationship
“Traffic Flows → Cores (Applications) in the NIC, with OSes
correspondingly enhanced to support such capability. For
transport layer traffic, A-TFN maintains a Flow-to-Core table
in the NIC, with one entry per flow. Each entry tracks which
receive queue (core) a flow should be assigned to. With each
outgoing transport-layer packet (including ACK packet), the
OS records a processor core ID and uses it to update the entry
in the Flow-to-Core table. As soon as any network processing
is performed in a process context, A-TFN learns of the core on
which an application thread resides and can steer future
incoming traffic to the right core. This is a key point that A-
TFN is different from Flow Director.

The design of such a mechanism involves a trade-off
between the amount of work done in the NIC and in the OS.
There are two design options. Option 1 is to minimize changes
in the OS and focuses instead on identifying the minimal set of
mechanisms to add to the NIC. This design adds complexity
and cost to the NIC. On the other end of the design space, it
could be let the OS update the flow-to-core table directly
without changing anything in the NIC hardware (option 2).
Conceptually, this approach could be fairly straightforward to
implement. However, it might add significant extra
communication overheads between the OS and the NIC,
especially when the Flow-to-Core table gets large. Due to
space limitation, this paper is mainly focused on the first
design option. In our future work, we will explore the second
design option. Besides, option 1 design has other goals: (1) A-
TFN must be simple and efficient. NIC controllers usually
utilize a less powerful CPU with a simplified instruction set
and insufficient memory to hold complex firmware. (2) A-
TFN must preserve in-order packet delivery. (3) The
communication overheads between the OS and A-TFN must
be minimal.

Fig. 8 illustrates the A-TFN details. A-TFN extends the
current RSS technologies. It supports multiple receive queues
in the NIC, up to the number of cores in the system. With MSI
and Flow-Pinning support, each receive queue has a dedicated
interrupt and is tied to a specific core. Each core in the system
is assigned a specific receive queue. A-TFN handles non-
transport layer traffic in the same way as does RSS. That is,
based on a hash of the incoming packet’s headers, the NIC
assigns it to the same queue as other packets from the same
data flow, and distributes different flows across queues. For
transport layer traffic, A-TFN maintains a Flow-to-Core table
with a single entry per flow. Each entry tracks the receive
queue (core) to which a flow should be assigned. The entries
within the Flow-to-Core table are updated by outgoing
packets. For unidirectional TCP data flows, outgoing ACKs
update the Flow-to-Core table. For an outgoing transport-layer
packet, the OS records a processing core ID in the transmit

descriptor and passes it to the NIC. Since each packet contains
a complete identification of the flow it belongs to, the specific
Flow → Core relationship could be effectively extracted from
the outgoing packet and its accompanying transmit descriptor.
As soon as any network processing is performed in process
context, A-TFN learns of on which core an application thread
resides.

3.2 Flow-to-Core Table and its Operations

The Flow-to-Core table consists of flow entries. Flow
entries are managed in a hash table, with a linked list to
resolve collisions. Each entry consists of:
• Traffic Flow. A-TFN makes use of the 5-tuple {src_addr,

dst_addr, protocol, src_port, dst_port} in the receive
direction to specify a flow. Therefore, for an outgoing
packet with the header {(src_addr: x), (dst_addr: y),
(protocol: z), (src_port: p), (dst_port: q)}, its
corresponding flow entry in the table is identified as
{(src_addr: y), (dst_addr: x), (protocol: z), (src_port: q),
(dst_port: p)}.

• Core ID. The core to which the flow should be steered.
• Transition State. A flag to indicate if the flow is in a

transition state. The goal is to ensure in-order packet
delivery.

• Packets in Transition. A simple packet list to
accommodate temporary packets when the flow is in a
transition state. The goal is to ensure in-order packet
delivery.
In addition, to avoid non-deterministic packet processing

time, a collision-resolving linked list is limited to a maximum
size of MaxListSize . Flows are not evicted in case of
collision. When a specific hash’s collision-resolving list
reaches MaxListSize , later flows with that hash will not be
entered into the table.

a). Flow Entry Generation and Deletion

A-TFN monitors each incoming and outgoing packet to
maintain the Flow-to-Core Table. An entry is generated in the
Flow-to-Core table as soon as A-TFN detects a successful
three-way handshake. To reduce NIC complexity, A-TFN
need not run a full TCP state machine in the NIC. A flow

entry is deleted after a configurable period of time, T
delete

, has
elapsed without traffic. In this way, A-TFN need not handle
all exceptions such as missing FIN packets and various
timeouts. To prevent memory exhaustion or malicious attacks,
A-TFN sets an upper bound on the number of entries in the
Flow-to-Core Table. When the Flow-to-Core table starts to
become full, TCP flows can be aged out more aggressively by
using a smaller T

delete
. For traffic flows that are not in the

Flow-to-Core table, packets are delivered based on a hash of
the incoming packets’ headers.

b). Detection and Prevention of Packet Reordering

The entries of the Flow-to-Core table are updated by
outgoing packets. For each outgoing transport-layer packet,
the OS records a processing core ID in the transmit descriptor
and passes it to the NIC. A naive way to update the
corresponding flow entry is with the passed core ID, omitting
any other measures. As soon as any network processing is
performed in process context, A-TFN will learn of the process
migration and can steer future incoming traffic to the right
core. However, this simple flow entry updating mechanism
cannot guarantee in-order packet delivery. In Section 2.5, we
analyze why Flow Director cannot guarantee in-order packet
delivery. The model and analysis can be also applied here. As
we have analyzed, if ! is small and n >m , the condition of
T
service

(S)> T
service

(S +1)would easily hold and lead to packet
reordering. Since the ring buffer size is D , the worst case is
n = D!1 and m = 0 . It would have
T
service

(S) = T !! + (D!1) / R
service

 and Tservice(S +1) = T +! . TCP
performance suffers in the event of severe packet reordering
[8]. However, if the delivery of packet S+1 to Core 1 can be
delayed for at least (D!1) / R

service
, then

T
service

(S +1) ! T +! + (D"1) / R
service

. As a result,
T
service

(S +1)> T
service

(S) and in-order packet delivery can be
guaranteed. Therefore, A-TFN adopts the following flow entry
updating mechanism: for each outgoing transport-layer packet,
the OS records a processing core ID in the transmit descriptor
and passes it to the NIC to update the corresponding flow
entry. For a TCP flow entry, if the new core id is different
from the old one, the flow enters the “transition” state.
Correspondingly, its “Transition State” is set to “Yes” and a
timer is started for this entry. The timer’s expiration value is
set to T

timer
= (D!1) / R

service
. Incoming packets of a flow in the

transition state are added to the tail of “Packets in Transition”
instead of being immediately delivered. When the timer
expires, the flow leaves the transition state. The “Transition
State” is set back to “No” and all of the packets in “Packets in
Transition,” if they exist, are assigned to the new core. For a
flow in the “non-transition” state, its packets are directly
steered to the corresponding core. With current computing
power, (D!1) / R

service
is usually at the sub-millisecond level,

at best. For A-TFN, T
timer
 is a design parameter and is

configurable. In contrast, Flow Director does not have an
effective mechanism to ensure in-order packet delivery.

3.3 Required OS Support

Fig. 8 A‐TFN Mechanisms

A-TFN design requires only two small OS changes in
order to be properly supported. These can be easily
implemented. (1) For an outgoing transport-layer packet, the
OS needs to record a processing core ID in the transmit
descriptor passed to the NIC. (2) The transmit descriptor needs
to be updated with a new element to store this core ID. A
single-byte element can support up to 256 cores, which is
sufficient for most of today’s systems. In addition, the size of
a transmit descriptor is usually small, typically less than a
cache line. Transmit descriptors are usually copied to the NIC
by DMA using whole cache line memory transactions. Adding
a byte to the transmit descriptor introduces almost no extra
communication overhead between the OS and NIC.

4. Analysis and Experiments

The A-TFN mechanism is simple and requires the most
minimal OS support. In addition, the communication
overheads between the OS and A-TFN are reduced to a
minimum. A-TFN can be effectively implemented with
current hardware and software technologies.

4.1 Analytical Evaluation

a) Delay. To ensure in‐order packet delivery, incoming
packets of a flow in the transition state are added to the tail of
“Packets in Transition”. These packets are delivered later,
when the flow exits the transition state. Clearly, this can add
delay to certain packets and the maximum delay a held
packet can experience is T

timer
. Previous analysis has shown

that in-order packet delivery is guaranteed when T
timer

 is set to
(D!1) / R

p . But incoming packets rarely fill a ring buffer in
the real world. If

!

T
timer

 were configured to be smaller, this
would still ensure in-order packet delivery in most cases. We
had recorded the duration for which the OS processes the ring
buffer in [8]. The duration is generally shorter than 20
microseconds. In most cases the extra delay is so small that it
can be ignored.

b) Flow Affinity and Network Data Affinity. The intent of A‐
TFN is to automatically steer incoming network data to the
same core on which its application thread resides. As soon as
any network processing is performed in a process context, A-
TFN learns of the core on which an application thread resides
and can steer future incoming traffic to the right core. The
desired flow affinity and network data affinity are guaranteed.

c) Hardware design considerations. A-TFN’s memory is
mainly used to maintain the Flow-to-Core table, holding flow
entries and accommodating packets for flows in the transition
state. To hold a single flow entry, 20 bytes is quite sufficient.
Therefore, a 10,000-entry Flow-to-Core table requires only 0.2
MB of memory. (These figures apply to IPv4; IPv6 support
would add 24 bytes to the size of each entry, or less if the flow
label could be relied upon.) In addition, to accommodate
packets for flows in transition, if

!

T
timer

 is set to 0.2 millisecond,
even for a 10Gbps NIC, the memory required is 0.2 ms ×
10Gbps = 0.25 MB, at maximum. In the worst case, an extra
0.5 MB of fast SRAM is enough to support the Flow-to-Core

Table. A Cypress 4Mb (10ns) SRAM now costs around $7.
Appendix C lists the cost, memory size and power
consumption of three popular 10G Ethernet NICs in the
market. A-TFN’s requirement of an extra 0.5 MB fast SRAM
in the NIC won’t add much extra cost and power consumption
to current 10Gbps NICs. There is other hardware
implementation cost. A-TFN might utilize content-addressable
memories (CAMs) to implement the lookup function in the
flow-to-core table. A linked list in HW is expensive to build
given all the extra handling. There will be a tradeoff in
hardware complexity (cost) and A-TFN effectiveness.

d) 40GigE and 100GigE. The networking community is
working towards 40GigE and 100GigE. A-TFN must be
applicable to these emerging technologies. In fact, A-TFN can
be simply extended to 40GigE or 100GigE except a few small
changes. First, MaxListSize , the maximum size of the
collision-resolving linked lists of the Flow-to-Core table,
should be reduced if higher memory speed is not available.
For a 10GbE NIC, the time budget to process a 1500byte
packet is around 1200 ns. For a 40GigE and 100GigE NIC,
such time budget is reduced to 300 ns and 120 ns,
respectively. In reality, A-TFN’s actual allowable time budget
to process a packet is even smaller due to the existence of
smaller sized packets (<1500bytes). Assume A-TFN’s other
operations such as hash computing and packet delivery totally
take T

other
 and each item in a linked list takes an extra T

item
 to

access. Therefore, theMaxListSize for a 40GigE NIC and
100GigE NIC is approximately (300!T

other
) /T

item
 and

(120!T
other
) /T

item
, respectively. Second, more memory is

required to hold packets for flows in transition to ensure in-
order packet delivery. If

!

T
timer

 is set to 0.2 millisecond, for a
40GigE NIC, the memory required is 0.2 ms × 40Gbps = 1
MB; for a 100GigE NIC, the memory required is 2.5 MB.

4.2 Experimental Evaluation

4.2.1 Prototyped Systems

We prototyped an A‐TFN with two receive queues as
shown in Fig. 9A. A sender connects to a receiver via two
physical back‐to‐back 10Gbps links. The sender and
receiver are the same computer systems as specified in
Section 2.4. The 10Gbps links are driven by Myricom
10Gbps Ethernet NICs. In both the sender and the receiver,
the two Myricom 10Gbps NICs are aggregated into a single
logical bonded interface with the Linux bonding driver. In
the sender, the bonding driver is modified with A‐TFN
mechanisms and each 10Gbps link is deemed an A‐TFN
receive queue. In the receiver, each slave NIC (receive
queue) is pinned to a specific core. In addition, the
receiver’s OS is modified to support the A‐TFN
mechanisms. For an outgoing transport-layer packet, the OS
records a processing core ID in the “transmit descriptor” and
passes it to “A-TFN.” Here, we make use of four reserved bits
in the TCP header as the “transmit descriptor” to communicate
the core ID. When the sender receives a “transmit descriptor,”
it extracts the passed Core ID and updates the corresponding
flow entry in the Flow-to-Core table. Unless otherwise

specified, T
timer

is set to 0.1 ms. The Flow-to-Core table is
upped limited to 10, 000 entries. In our emulated system, we
measure the Flow-to-Core Table’s search time. The search
time to access the first item in a collision-resolving linked list
takes around 260 ns, which includes the hashing and locking
overheads. For each next item in the list, it takes
approximately an extra 150 ns. Therefore, the longest search
in our system takes 260+150*(MaxListSize!1) ns. For a
10Gbps NIC, the time budget to process a 1500byte packet is
around 1200 ns. To evaluate MaxListSize ’s effect on A-
TFN’s performance, we set MaxListSize to 1 and 6,
respectively. Correspondingly, A-TFN is termed as A-TFN-1
and A-TFN-6.

Similarly, we implemented a two-receive queue RSS
NIC, as shown in Fig. 9B. In both the sender and the receiver,
the two Myricom 10Gbps NICs are aggregated into a single
logical bonded interface with the bonding driver. In the
sender, the bonding driver is modified with RSS mechanisms,
and each 10Gbps link is treated as an RSS receive queue.
Unless otherwise specified, the hashing is based on the
combination of {src_addr, dst_addr, src_port, dst_port} for
each incoming packet. In the receiver, each slave NIC (receive
queue) is pinned to a specific core.

4.2.2 Experiment Configurations

We ran data transmission experiments with iperf using the
prototyped systems shown in Fig. 9. In our experiments, iperf
sends with n parallel TCP streams for 100 seconds, to ports
5001 and 6001, respectively. Therefore, totally 2n parallel
TCP streams are transmitting in each experiment. The number
n was varied across experiments. In all the experiments, the
sender runs the same scripts. The scrip runs in the sender is:

 iperf –c receiver –P n –t 100 –p 5001 &
iperf –c receiver –P n -t 100 -p 6001 &

The experiment configurations in the receiver are varied
across experiments.

Experiment 1 was designed to verify that A-TFN can
remedy the RSS limitation. In section 2.2 we discussed four
cases in OSes in which a network application thread resides on
cores other than those to which its corresponding network
interrupts are directed. Due to page limitation, we only
discussed the case that a single-threaded application must

handle multiple concurrent TCP connections in the
experiment. In the real world, there are many cases that a
single-threaded application must handle multiple concurrent
TCP connections. For example, Nginx [22] and Lighttpd [23]
are such cases. Nginx and Lighttpd are probably the two best-
known asynchronous HTTP servers. They are event-driven
and handle multiple concurrent TCP connections in a single
thread (or at least, very few threads). In Experiment 1, TCP
streams of a specific port (5001 or 6001) were pinned to a
particular core in the receiver (Table 2). In this way, we
simulated iperf of port 5001 and 6001 as two “single-
threaded” applications that run on core 0 and 2, respectively.
Each single-threaded application handles n concurrent TCP
connections. There are a few reasons why we simulated a
single-threaded application using iperf (a multi-threaded
application). First, the purpose of the experiments is to verity
that A-TFN can effectively improve network performance and
Iperf is a simple and commonly used networking testing tool.
Second, if a real single-threaded application like Nginx were
used in the experiments, the complicated software itself might
interfere with the network performance testing. For example,
Nginx is event-driven and many of its activities are unrelated
to network operations.

Receive Queues
Config.

Iperf Config.
ReceiveQ 0 @ Core 0 “iperf –s –p 5001” @ Core {0}
ReceiveQ 1 @ Core 2 “iperf –s –p 6001” @ Core {2}

Table 2 Experiment 1 Receiver Configurations

Different from Flow Director, A-TFN uses a special flow
entry updating mechanism to guarantee in-order packet
delivery. Experiment 2 was designed to evaluate whether this
mechanism actually works. In Experiment 2, iperfs (ports
5001 and 6001) were allowed to run on both cores where the
two receive queues were pinned (Core 0 and 2) (Table 3).
Linux was configured to run in multicore peak performance
mode. As a result, iperf threads may migrate across cores.

Receive Queues
Config.

Iperf Config.
ReceiveQ 0 @ Core 0 “iperf –s –p 5001” @ Core {0, 2}
ReceiveQ 1 @ Core 2 “iperf –s –p 6001” @ Core {0, 2}

Table 3 Experiment 2 Receiver Configurations

4.2.3 Experiment Results

a) Experiment 1 Results

Given the same experimental conditions, we compared
the results with A‐TFN to those with RSS. The metrics of
interest were: (1) Throughput; (2) WAITTIME‐TOTAL; and
(3) BUS_HITM_DRV. (The number of events between
samples was 10000.) Consistent results were obtained
across repeated runs. All results presented are shown with
a 95% confidence interval.

When a single-threaded network application handles
multiple concurrent TCP connections, the hashing function of
the RSS-enabled NIC will evenly and statistically distribute
the connections across the cores. Since the application can

A. The prototyped A‐TFN

B. The prototyped RSS

Fig. 9 Prototyped Systems

only run on a single core at any given moment, some
connections get steered to cores other than the one on which
the application runs. As a result, TCP processing will alternate
between different cores. This fact may even lead to contention
for shared resources between interrupt and application threads
when they concurrently process packets of the same flows.
Under such circumstances, overall system efficiency could be
severely degraded. The experimental results in Fig. 10 confirm
these points. Experiment 1 shows that: (1) A-TFN can
effectively improve the network throughput. A-TFN-6
markedly increased the TCP throughput by more than 20%
with 2n=1000. (2) A-TFN can significantly reduce lock
contention in parallel network stacks. The total time spent
waiting to acquire various kernel locks was decreased by
more than 98% for A‐TFN‐6 with 2n=40. (3) A-TFN can
substantially reduce system synchronization overhead.
Experimental data confirms the effectiveness of A-TFN in
improving network throughput and enhancing system
efficiency. This is because the design of A-TFN steers
incoming network traffic to the same core(s) on which its
application thread resides. Therefore, TCP processing does not
alternate between different cores and contention involving
shared resources between interrupt and application threads
will not occur. In addition, costly MESI operations can be
greatly reduced. For Experiment 1, the improvements in
synchronization and cache statistics are substantial, yet they
do not seem result in equivalent gains in throughput. This is
because TCP data transmission involves complex interaction
of the sender and receiver. Certainly, the improvements in
synchronization and cache statistics in the receiver only
cannot result in equivalent gains in TCP throughput. In the

experiments we also noticed that the receiver’s system bus
approaches saturation, which also partially explains the
phenomena. We believe that if faster system bus were applied,
the improvements in synchronization and cache statistics in
the receiver would result in more gains in throughput.

For the Flow-to-Core table, when a specific hash’s
collision-resolving lined list reaches

!

MaxListSize , subsequent
flows for that hash will not be entered into the table. Their
packets are delivered in the same way as does RSS. It can be
seen from Fig. 10 that with 2n=40, A-TFN-1’s results
(especially for throughputs) are very close to those of A-TFN-
6’s. With 2n=2000, A-TFN-1 behaves closer as does RSS. We
record the percentage of flows that are entered into the Flow-
to-Core table when n is varied in Table 4. It shows that as n
increases, the percentage of flows that are entered into the
table decreases, with the effects on A-TFN-1 being much
more than on A-TFN-6. With 2n=2000, A-TFN-1 has only a
12.7% of flows entered into the Flow-to-Core table. The
reason the ratio is so low is because all the flows share a single
pair of IP addresses, they are not hashed efficiently across the
table. As a result, more traffic would be delivered in the same
way as RSS does. From the hardware implementation’s
perspective, A-TFN-1’s Flow-to-Core table is much easier to
implement. But its performance is not satisfactory as the
number of TCP streams increase. Thus, there will be a tradeoff
in hardware complexity (cost) and A-TFN effectiveness. It is
anticipated that with n further increased, A-TFN-6 would have
more traffic delivered in the way as RSS does; its
effectiveness would start to decrease as well. Normally, a
high-end web server would handle a few thousand concurrent
TCP streams. For our two-core A-TFN emulated system, 2000
streams is quite a high number. Since the trend is already very
clear, we don’t further increase n.

2n A‐TFN‐6 A‐TFN‐1
40 100% ± 0 88% ± 1.6%

200 100% ± 0 71% ± 2.9%
1000 95.7% ± 1.1% 24.5% ± 0.1%
2000 71.7% ± 0.2% 12.7% ± 0%

Table 4 Flows @ Flow‐to‐Core Table Percentage
With RSS technologies, the worst cases occur when soft

partition technologies, like CPUSET, are applied in the
networking environments. This can easily lead to the
undesirable situation in which network applications are soft-
partitioned on cores other than those to which their network
interrupts are directed. Also, an OS scheduler prioritizes load
balancing (or power saving) over process-to-interrupt affinity.
In these environments, network applications may also be
scheduled on cores other than those where their corresponding
network interrupts are directed. We ran experiments in these
environments. All the experiments verify that A-TFN can
steer incoming network data to the same core on which its
application thread resides, resulting in improved performance.

b) Experiment 2 Results

In Experiment 2, iperfs were allowed to run on both cores
and Linux was configured to run in multicore peak

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

$!" #!!" '!!!" #!!!"

!
"
#
$%
&&
'(
)
$*
+
,
)
-
+
.'
/0
1
-
23
'

4+51#$'*6'7%$%&&#&'(87'9.$#%52'

())"

*+,-.+'"

*+,-.+%"

!"

#!!!"

$!!!!"

$#!!!"

%!!!!"

%#!!!"

&!!!!"

&#!!!"

'!!!!"

'!" %!!" $!!!" %!!!"

!
"
#
$
%
&'
(
)'
*
+
,
-
.
/0
1
-
2
3
4
'5
6
7
8
8
8
8
9'

!"#$%&'()':;&;<<%<'0=:',>&%;#?'

())"

*+,-.+$"

*+,-.+/"

!"

#!!!!!"

$!!!!!!"

$#!!!!!"

%!!!!!!"

%#!!!!!"

&!" %!!" $!!!" %!!!"

!
"
#$
$
#%

&
'$
(
$"

)*
+,
-
.
/
01
2/
.
3
04
*

,56718*/9*:-8-;;1;*$<:*=>81-60*

'(("

)*+,-*$"

)*+,-*."

Fig. 10 Experiment 1 Results

performance mode. Therefore, iperf threads may migrate
across cores. The receiver was instrumented to record out-of-
order packets and we calculated relevant packet reordering
ratios. For A-TFN-6, we set

!

T
timer

 to 0 and 100 µs,
respectively. The experimental results are shown in Table 5.

When

!

T
timer

 is 0, incoming packets of a flow in the
transition state are immediately delivered, instead of being
added to the tail of “Packets in Transition.” As discussed
before, this could lead to packet reordering. The results in
Table 5 reflect this fact. However, it can be seen that with
2n=40 and 2n=200, the packet reordering ratio is pretty low.
This is because our experiments were actually run in a two-
core system. When n is low, fewer iperf threads are spawned
and process migration would occur less frequently. Therefore,
less packet reordering would occur. We believe that if the
experiments were run in a system with more cores, process
migration would occur more frequently and would lead to
more incidences of packet reordering even if n were low. On
the other hand, it can be seen that when n is further increased
(with 2n=1000 and 2n=2000), the packet ratio steadily
increases. This is because when n is increased, more iperf
threads are spawned and process migration will occur more
frequently in the simulated two-core system. As a result, more
packet reordering will result.

When

!

T
timer

 is 100 µs, no out-of-order packets are
recorded. This shows that A-TFN’s packet reordering
prevention mechanism really takes effect and can effectively
guarantee in-order packet delivery.

2n

!

T
timer

= 0 (µs)

!

T
timer

= 100 (µs)
40 5.110E-07 ± 6.809E-07 0

200 6.278E-06 ± 8.553E-06 0
1000 3.639E-05 ± 2.754E-05

0
2000 2.174E-04 ± 8.515E-05 0

Table 5 Packet Reordering Ratios

5. Related Works

Over the years, research on affinity in network
processing has been extensive. Salehi et al. [2] studied the
effectiveness of affinity‐based scheduling in
multiprocessor network protocol processing using both
packet‐level and connection–level parallelization
approaches. But since these approaches worked in the
user space, they did not consider either system or
implementation costs. A. Foong et al. [3] experimented
with affinitizing processes/threads, as well as interrupts
from NICs, to specific processors in an SMP system.
Experimental results suggested that processor affinity in
network processing contexts can significantly improve
overall performance. J. Hye-Churn et al. [4] studied the
problem of multi-core aware processor affinity for TCP/IP
over multiple network interfaces, using a software-only
approach. Their research topics are similar to us.

Other researchers have adopted a hard partition
approach [24][25]. In multiprocessor environments, a
subset of the processor is dedicated to network
processing; the remaining processors perform only

application‐relevant computations. The limitation of this
approach is that the OS architecture requires significant
changes.

The NIC technologies, such as Intel’s vmdq [26] or the
PCI‐SIG’s SR‐IOV [27], also provide data steering
capabilities for the NICs. But they are I/O virtualization
technologies targeting at virtual machines in the
virtualized environment, not targeting at general purpose
OSes in the non‐virtualized environment. Intel Ethernet
Flow Director technology [7] can automatically steer
incoming network data to the same core on which its
application thread resides. However, Flow Director can cause
significant packet reordering in multiprocessing environments.

 The Receive Packet Steering (RPS) [28] and Receive
Flow Steering (RFS) [29] technologies are recently
introduced. Both RPS and RFS are OS software technologies,
instead of NIC technologies. They make use of an extra core
in a multicore system to spread and steer incoming packets to
other cores. RPS and RFS complement the RSS and A-TFN
mechanisms. They are applied when NIC does not support
RSS or A-TFN.

6. Conclusion and Discussion

We propose an A-TFN mechanism to remedy the
limitations in RSS and Flow Director. In the paper, we discuss
two A-TFN design options. Due to space limitation, this paper
is mainly focused on the first design option. The new NIC is
emulated in software. The experimental results show our
solution is effective and practical to remedy the limitations we
have identified in RSS and Flow Director. In future work, we
will explore the second design option.

In our experiments, the sender and receiver are connected
back-to-back. As a result, the Round Trip Time (RTT) is less
than 0.1ms. With such a small RTT, the packet reordering’s
negative impacts cannot take full effect. That is the reason
why we did not present experimental evidence of the impacts
of various degree of reordering on the overall performance in
the paper. Luckily, there are various previous researches that
studied the packet reordering’s negative impacts, which are
convincing. And we have cited these researches in the paper.
Readers might ask why not we run the experiments with larger
RTTs? The answer is simple: we cannot run such experiments
due to Limits of Current Experiment Conditions. The
maximum throughput in our experiments is close to 15Gbps.
In the real world, it is difficult for us to find a network path
with RTT at least greater than 5ms and with bandwidth greater
than 15Gbps to run our experiments. Fermilab does have such
networking facilities to other sites. But these networks run
production traffic. We are not allowed to run such experiments
in our production networks. Very few people in the world, if
not none, can find suitable networks to run our experiments.
Furthermore, we cannot emulate such a network path in the
lab environments either. There are tools like Netem [30] that
provides network emulation functionality by emulating the
properties of wide area networks. However, almost all these
tools do no work well in high-speed networks (>5Gpbs) due to
system clock resolution issues or system bus speed issues.

References:

[1] P. Willmann et al., “An Evaluation of Network Stack Parallelization

Strategies in Modern Operating Systems,” In Proc. USENIX Annual
Technical Conference, pp. 91–96, 2006

[2] J. D. Salehi, J. F. Kurose, and D. Towsley, “The effectiveness of
affinity-based scheduling in multiprocessor network protocol processing
(extended version),” IEEE/ACM Trans. Networking, vol. 4, pp. 516–530,
Aug. 1996.

[3] A. Foong et al., “An in-depth analysis of the impact of processor
affinity on network performance,” In Proc. IEEE International
Conference on Networks, 2004.

[4] J. Hye-Churn et al., “MiAMI: Multi-Core Aware Processor Affinity for
TCP/IP over Multiple Network Interfaces,” In Proc. IEEE Symposium
on High Performance Interconnects, 2009.

[5] R. Huggahalli et al., “Direct Cache Access for High Bandwidth Network
I/O,” In Proc. 32nd Annual International Symposium on Computer
Architecture, 2005.

[6] Microsoft Corporation (Nov. 2008), Receive-side scaling enhancements
in windows server 2008. [Online]. Available:
http://download.microsoft.com/download/a/d/f/adf1347d-08dc-41a4-
9084-623b1194d4b2/RSS Server2008.docx

[7] Intel Corporation (Nov. 2010), Intel 82599 10gbe controller datasheet.
[Online]. Available:
http://download.intel.com/design/network/datashts/82599_datasheet.pdf

[8] W. Wu et al., “Sorting reordered packets with interrupt coalescing,”
computer network, Volume 53, Issue 15, 2009, pages: 2646-2662.

[9] M. Laor, L. Gendel, “The effect of packet reordering in a backbone link
on application throughput,” IEEE Network, vol. 16, no. 5, pp. 28-36,
Sep/Oct 200.

[10] P. McManus, Performance tradeoffs of TCP Selective
Acknowledgement. [Online]. Available:
http://www.ibm.com/developerworks/linux/library/l-tcp-sack/

[11] —— (Nov. 2010), Ixgbe device driver readme. [Online]. Available:
http://downloadmirror.intel.com/14687/eng/README.txt

[12] Linux Kernel Website. [Online]. Available: http://kernel.org/
[13] S. Siddha et al., Chip Multi Processing aware Linux Kernel Scheduler,

In Proc. the Linux Symposium, pp. 329 – 340, 2006
[14] V. Pallipadi et al., “Processor Power Management features and Process

Scheduler: Do we need to tie them together?” In Proc. LinuxConf
Europe, 2007.

[15] M.E. Russinovich et al., Microsoft Windows Internals, fourth
ed.,Microsoft Press, 2004. ISBN 0735619174.

[16] W. Wu et al., The performance analysis of Linux networking – packet
receiving, Computer Communications 30 (2007) 1044–1057.

[17] W. Wu et al., Potential performance bottleneck in Linux TCP,
International Journal of Communication Systems 20 (11) (2007) 1263–
1283.

[18] L. Ivanov et al., Modeling and verification of cache coherence protocols,
In Proc. the IEEE International Symposium on Circuits and Systems, pp.
129 – 132, 2001

[19] Iperf Website. [Online]. Available: http://iperf.sourceforge.net/
[20] Oprofile Website. [Online]. Available: http://oprofile.sourceforge.net/
[21] Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume

3B: System Programming Guide, Intel Corporation, 2008
[22] NGINX Website. [Online]. Available: http://nginx.org
[23] LIGHTTPD Website. [Online]. Available: http://lighttpd.net

[24] T. Brecht et al. Evaluating Network Processing Efficiency with

Processor Partitioning and Asynchronous I/O. In Proc. EuroSys, 2006.
[25] G. Regnier et al., ETA: Experience with an Intel Xeon processor as a

packet processing engine, IEEE Micro, 2004.
[26] Intel Corporation, “Intel VMDq Technology,” 2008.
[27] http://www.pcisig.com/specifications/iov
[28] http://lwn.net/Articles/328339/
[29] http://lwn.net/Articles/382428/
[30] Netem Website. [Online]. Available:

http://www.linuxfoundation.org/collaborate/workgroups/networking/net
em

